Optimal Sequence Alig-ment (low-budget production version)

Overview

- The alignment problem
- The dynamic programming solution
- Pairwise alignment: exact global and local solutions
- Multiple alignment and the cost of perfection

Recap: protein scoring

C matrix – scaled frequencies of change from amino acid a to amino acid b (based on observed changes in some set)

Expectation based solely on frequencies of amino acids (changes not favoured / disfavoured)

Better than random: ratio > 1 Random: ratio = 1 Worse than random: ratio < 1

3

Recap: protein scoring

Better than random: $D_{a,b} > 0$ Random: $D_{a,b} = 0$ Worse than random: $D_{a,b} < 0$

4

PAM scoring matrix

	С	S	Т	Ρ	Α	G	Ν	D	E	Q	Н	R	K	M	Ι	L	V	F	Y	W	
С	9																				С
S	-1	4																			S
Т	-1	1	5																		Т
Ρ	-3	-1	-1	7											· /c						Ρ
Α	0	1	0	-1	4						P.	AIVIZ	250 r	matr	ix (S	= 2,	log	base	e 2)		Α
G	-3	0	-2	-2	0	6															G
Ν	-3	1	0	-2	-2	0	6														N
D	-3	0	-1	-1	-2	-1	1	6													D
E	-4	0	-1	-1	-1	-2	0	2	5		-										E
Q	-3	0	-1	-1	-1	-2	0	0	2	5											Q
Η	-3	-1	-2	-2	-2	-2	1	-1	0	0	8										Н
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5									R
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5								K
M	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5							M
1	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4						1
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4					L
V	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4				V
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6			F
Υ	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	1	Y
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11	W

DNA matrix

• Something like this usually works:

	А	G	С	Т
А	1	-1	-1	-1
G	-1	1	-1	-1
C	-1	-1	1	-1
Т	-1	-1	-1	1

• Or this:

	А	G	С	Т
A	1	0.5	-1	-1
G	0.5	1	-1	-1
C	-1	-1	1	0.5
Т	-1	-1	0.5	1

Back to the alignment problem

Given a scoring scheme S

and a set of homologous sequences, uh, S

introduce gaps if necessary to generate an alignment (let's call it *S*) that optimizes the score

So let's make some alignments!

Sequence S_1 : length *m* Sequence S_2 : length *n*

In total, there are $\binom{n+m}{m}$ possible alignments of these sequences

n = m = 2: AB-- AB-AB A-B-AB 4!/2!2! = 6 possibilities --CD -CDC-DCD -CDCD-

n = m = 10: 184,756 possible alignments

Alignment of 2 sequences, each 100 amino acids in length:

= 9.05485147 × 10⁵⁸ possibilities

Brute force is *not* going to work here...

The Key to Alignment

If we were given the midpoint X within an optimal alignment of S₁ and S₂, we could split on X and solve each problem independently

MEH..K**N**P..TYL MDH..K**Q**P..SYI

MEHK		PTYL
MDHK	Ť	PSYI

But we don't know any X, so divide and conquer isn't going to work

However...

In searching for the best alignment:

 Start at the beginning of the sequences and consider every possible X

- BUT -

 Store only the <u>best</u> path (series of matches and gaps) that leads us to X

Consider an alignment of AWGHE vs AWHEA:

(these continue as well)

= Dynamic Programming

Consider an alignment of <u>AWGHE</u> vs <u>AWHEA</u>:

Every possible X

AWGHE VS. AWHEA	Α	W	G	Η	Ε
Α	Best →(A,A)				
W					
Н					
Е		Best → (E,W)			
Α					Best \rightarrow (A,E)

Filling the matrix

We need our substitution matrix S and gap penalty scheme G

(we'll start with a linear gap penalty G = -gd)

For each possible X, consider the three immediate precursors

	AWGHE VS. AWHEA		A	W	G	Η	Ε
		0					
	A						
PAM250 g = 5	W						
	Η						
	Е						
	A						

S =

S = PAM250 g = 5			-AWHEA AWGHE		AWHE Awghe	A	AWGHE		
	AWGHE vs. AWHEA		A	W	G	Η	Е		
		0	-5	-10	-15	-20	-25		
AWHEA -AWGHE	A	-5							
AWHEA AWGHE	W	-10				in	sert gap i	n AWGHE	
AWHEA AWGHE	Η	-15				in	sert gap ii	n AWHEA	
AWHEA AWGHE	Ε	-20							
AWHEA AWGHE	A	-25							

	AWGHE VS. AWHEA		Α	W	G	Η	E	
		0	-5	-10	-15	-20	-25	
	Α	-5						
PAM250 g = 5	W	-10				in	sert gap iı	n AWGHE
	Η	-15				in	sert gap in	n AWHEA
	Е	-20						
	A	-25						1 (

S =

	AWGHE VS. AWHEA		Α	W	G	Η	E
S(A,A) = 2		0	-5	-10	-15	-20	-25
Therefore:	A	-5	2				
Insert -10 Insert -10 Match 2	W	-10					
	Н	-15					
	E	-20					
	A	-25					

	А	W	G	Н	Е					
Α										
W		F(2,2)	F(2,3)							
Н		F(3,2)	F(3,3) = ?							
E										
Α										
F(2,2) + S(G,H) match										
	nsert gap in AWGHE									
			i	nsert gap in AWHEA						

Remember paths INTO (not out of) each cell

Global Exact Alignment: Needleman-Wunsch

Since we have retained the best path to each F(x,y) in the matrix, we can <u>trace back</u> from F(m,n) to the origin and retrieve the optimal alignment path

AWGHE-AW-HEA

AWGHE VS. AWHEA		Α	W	G	Η	Е
	0	-5	-10	-15	-20	-25
Α	-5	2	-3	-8	-13	-18
W	-10	-3	19	• 14	9	4
Н	-15	-8	14	17	20	15
Е	-20	-13	9	14	18	24
A	-25	-18	4	10	13	19

Local Exact Alignment: Smith-Waterman

Only return 'good' sub-alignments of the whole problem

• Useful, for instance, when

This is Needleman-Wunsch again

> AWGHE-AW-HEA

Slightly modified (non-trivial) S-W example

Find the **largest** value in the matrix, and trace back from there to 0

Н	Έ
Н	Έ

AWGHE VS. AYHEA		Α	W	G	Η	Е
	0	0	0	0	0	0
Α	0	2	0	1	0	0
Y	0	0	2	0	0	0
Η	0	0	0	0	6	1
Ε	0	0	0	0	1	10
A	0	2	0	1	0	■ 5

Affine Gap Penalties

A horizontal move now has two possible costs; we need to consider both alternatives

(and therefore store the best scores for each box given horizontal, vertical, or diagonal entry)

Significance of S-W Alignments

RANDOMIZE n times

Fig. 6. Distribution of Z-values: (A) empirical distribution (rectangles) and Gumbel model (solide line) for quasi-real sequences. (Insert) the Gumbel model fits the experimental distribution for high Z-values. (B) empirical and Gumbel model for real sequences. (Insert) the Gumbel model (thick line) does not fit the experimental distribution (thin line) for high Z-values.

Alignment Complexity

- For each possible matching of a residue from sequence S₁ with a residue from S₂, we need to carry out a constant number of computations and comparisons
- Total = 3 x *m* x *n*
- = O(*mn*)
- ~ $O(n^2)$ if we assume $m \cong n$

Multiple Sequence Alignment

• In pairwise alignment, we are optimizing the score between two sequences

• When aligning 3 or more sequences, instead optimize the **sum of pairs** score:

The best alignment between a **pair of sequences** may not appear in the optimal **multiple alignment**

Multiple Sequence Alignment

 Dynamic programming on k sequences, each of length n requires construction of a k-dimensional matrix with n^k entries

• =
$$O(n^k)$$

Therefore exponential in the number of sequences!

MSA (Carrillo and Lipman, 1988)

The score of the optimal multiple alignment
S(a) can be <u>no greater</u> than the sum of optimal pairwise alignments S(â^{kl})

$$\sum_{k < l} S(a^{kl}) \leq \sum_{k < l} S(\hat{a}^{kl})$$

If we can establish a lower bound σ on the multiple alignment score, then we constrain each S(a^{kl}):

$$S(\hat{a}^{kl}) - S(a^{kl}) \leq \sum_{k' < l'} S(\hat{a}^{k'l'}) - \sigma$$

Remember: sum of all optimal pairwise alignments!

 σ high: S(akl) must be close to S(âkl)

So we need all optimal pairwise alignments

We also need σ . Where can we find it?

Types of multiple alignment

A. Block alignment

DILRI WWW	GMIPVPYV
EKLRV WCEA	A GWVPSNYI
DFIHV WWK	GMFPRNYV
DEYFI WWRJ	A GYIPSNYV
DAIIN WMYC	GMLPANYV
AIIQN WWRO	LWFPSNYV
DILTV WLNG	G GDFPGTYV
	DILRI WWW EKLRV WCEJ DFIHV WWK DEYFI WWRJ DAIIN WMY AIIQN WWR DILTV WLM

B. Segment alignment

EYVRALFDFNGNDEEDLPFKKGDILRIRDKPEEQ	WWNAEDSEGKR.GMIPVPYVEK
NLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGE	WCEAQTKNGQGWVPSNYITP
TYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPN	WWKGACHGQT GMFPRNYVTP
KKVVALYDYMPMNANDLQLRKGDEYFILEESNLP	WWRARDKNGQE.GYIPSNYVTE
KIFRAMYDYMAADADEVSFKDGDAIINVQAIDEG	WMYGTVQRTGRTGMLPANYVEA
CAVKALFDYKAQREDELTFIKSAIIQNVEKQEGG	.WWRGDYGGKKQ.LWFPSNYVEE
YQYRALYDYKKEREEDIDLHLGDILTVNKGSLVALGFSDGQEARPEEI	GWLNGYNETTGERGDFPGTYVEY

C. Local alignment

lvdyhrstsvsrnqqiflrdieqvpqqpty VQALFDF dpqedgelgfr RGDFIHV mdnsdpn
gsmstselkkvvaLyDympmnandlqlrKGDEYFIleesnlpWWRArdkngqe.GYIPSNYVteaeds
gsptfkcavkaLFDYkaqredeltfikSAIIQNvekqeggwww.Gdyggkkq.LWFPSNYVeemvnpegihrd
$\dots gyq {\tt YRALYDY} kkereed idlh {\tt LGDILTV} nkgslvalgfsdgqearpeeig {\tt WLNG} ynettger {\tt GDFPGTYV} eyigr kkisp$

D. Global alignment

LVDYHRSTSVSRNQQIFLRDIEQVPQQPTYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNRNV

From Lecompte et al. (2001) Gene

Summary

- Dynamic programming allows the calculation of optimal pairwise alignments (for a given scoring scheme!)
- As soon as we go from 2 to >2 sequences, the exponential time complexity of the algorithm makes it impractical
- Need heuristics!