Optimal Sequence Alig-ment
 (low-budget production version)

Overview

- The alignment problem
- The dynamic programming solution
- Pairwise alignment: exact global and local solutions
- Multiple alignment and the cost of perfection

Recap: protein scoring

Better than random: ratio > 1
Random: ratio = 1
Worse than random: ratio < 1

Recap: protein scoring

Better than random: $D_{a, b}>0$
Random: $D_{a, b}=0$
Worse than random: $D_{a, b}<0$

PAM scoring matrix

	C	S	T	P	A	G	N	D	E	Q	H	R	K	M	I	L	V	F	Y	W	
C	9																				C
S	-1	4																			S
T	-1	1	5																		T
P	-3	-1	-1	7							$\text { PAM250 matrix (} S=2, \log \text { base } 2 \text {) }$										P
A	0	1	0	-1	4																A
G	-3	0	-2	-2	0	6															G
N	-3	1	0	-2	-2	0	6														N
D	-3	0	-1	-1	-2	-1	1	6													D
E	-4	0	-1	-1	-1	-2	0	2	5												E
Q	-3	0	-1	-1	-1	-2	0	0	2	5											Q
H	-3	-1	-2	-2	-2	-2	1	-1	0	0	8										H
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5									R
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5								K
M	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5							M
I	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4						1
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4					L
V	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4				V
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6			F
Y	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7		Y
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11	W

DNA matrix

- Something like this usually works:

	A	G	C	T
A	1	-1	-1	-1
G	-1	1	-1	-1
C	-1	-1	1	-1
T	-1	-1	-1	1

- Or this:

	A	G	C	T
A	1	0.5	-1	-1
G	0.5	1	-1	-1
C	-1	-1	1	0.5
T	-1	-1	0.5	1

Back to the alignment problem

Given a scoring scheme S
and a set of homologous sequences, uh, S
introduce gaps if necessary to generate an alignment (let's call it S) that optimizes the score

So let's make some alignments!

Sequence S_{1} : length m
Sequence S_{2} : length n

In total, there are $\binom{n+m}{m}$ possible alignments of these sequences

$n=m=2:$	$A B--$	$A B-A B-A B$	$A-B-A B$
$4!/ 2!2!=6$ possibilities	$--C D$	$-C D C-D C D$	$-C D C D-$

$\mathrm{n}=\mathrm{m}=10: 184,756$ possible alignments

Alignment of 2 sequences, each 100 amino acids in length:
$=9.05485147 \times 10^{58}$ possibilities
Brute force is *not* going to work here...

The Key to Alignment

- If we were given the midpoint X within an optimal alignment of S_{1} and S_{2}, we could split on X and solve each problem independently

```
MEH..KNP..TYL
MDH..KQP..SYI
```

| MEH..K |
| :--- | :--- |
| MDH..K |$\quad+\quad$| P..TYL |
| :--- |
| P..SYI |

- But we don't know any X, so divide and conquer isn't going to work

However...

In searching for the best alignment:

- Start at the beginning of the sequences and consider every possible X
- BUT -
- Store only the best path (series of matches and gaps) that leads us to X

Consider an alignment of AWGHE vs AWHEA:

= Dynamic Programming

Consider an alignment of AWCHE vs AWHEA:

Sequence 1

Sequence 2 i

Every possible X

	A	W	G	H	E
A	$\underset{\substack{\text { Best } \\ \rightarrow(A, A)}}{\text { (}}$				
W					
H					
E		$\xrightarrow[\substack{\text { best } \\ \rightarrow(E, W)}]{\text { ent }}$			
A					$\underset{\substack{\text { Best } \\ \rightarrow(A, E)}}{\text { a }}$

Filling the matrix

We need our substitution matrix S and gap penalty scheme G
(we'll start with a linear gap penalty $\mathrm{G}=-\mathrm{gd}$)

For each possible X , consider the three immediate precursors

$\mathrm{S}=\mathrm{PAM} 250$ $\mathrm{g}=5$
AWHEA
-AWGHE
AWHEA
--AWGHE
AWHEA
---AWGHE
AWHEA
----AWGHE
AWHEA
-----AWGHE

ANGHE VSHE AWHEA		A	W	G	H	E
	0	-5	-10	-15	-20	-25
A	-5					
W	-10					
H	-15				insert gep in in AWGHE	
E	-20					
A	-25					

	$\begin{gathered} \text { AWGHE } \\ \text { vs. } \\ \text { AWHEA } \end{gathered}$		A	W	G	H	E
$S(A, A)=2$		0	-5	-10	-15	-20	-25
Therefore:	A						
Insert -10 Insert -10	W	-10					
	H	-15					
	E	-20					
	A	-25					

Remember paths INTO (not out of) each cell

AWGHE AWHEA		A	W	G	H	E
	0	-5	-10	-15	-20	-25
A	-5	2	-3	-8	-13	-18
W	-10	-3	19	14	9	4
H	-15	-8	14	17	20	15
E	-20	-13	9	14	18	24
A	-25	-18	4	10	13	19

Global Exact Alignment: Needleman-Wunsch

Since we have retained the best path to each $F(x, y)$ in the matrix, we can trace back from $F(m, n)$ to the origin and retrieve the optimal alignment path

awGHE AWHEA		A	W	G	H	E
	0	-5	-10	-15	-20	-25
A	-5	2	-3	-8	-13	-18
W	-10	-3	19	14	9	4
H	-15	-8	14	17	20	15
E	-20	-13	9	14	18	24
A	-25	-18	4	10	13	19

AWGHE-AW-HEA

aWGH. AWHEA		A	W	G	H	E
	0	-5	-10	-15	-20	-25
A	-5	2	-3	-8	-13	-18
W	-10	-3	19	14	9	4
H	-15	-8	14	17	20	15
\mathbf{E}	-20	-13	9	14	18	24
A	-25	-18	4	10	13	19

Local Exact Alignment: Smith-Waterman

- Only return 'good’ sub-alignments of the whole problem
- Useful, for instance, when

1 \square

2 \square
\square Homologous, highly conserved Homologous, poorly conserved No homology at all

This is
Needleman-Wunsch again

AWGHE-AW-HEA

aWGHE AWHEA	A	W	G	H	E	
	0	-5	-10	-15	-20	-25
A	-5	2	-3	-8	-13	-18
W	-10	-3	19	14	9	4
H	-15	-8	14	17	20	15
E	-20	-13	9	14	18	24
A	-25	-18	4	10	13	19

Slightly modified (non-trivial) S-W example

Find the largest value in the matrix, and trace back from there to 0

HE
HE

AWGHE AYSEA		A	W	G	H	E
A	0	0	0	0	0	0
\mathbf{Y}	0	0	0	1	0	0
H	0	0	0	0	6	1
E	0	0	0	0	1	10
A	0	2	0	1	0	5

Affine Gap Penalties

Opening a new gap (cost $=\mathrm{d}$)

Extending a gap
(cost = e)

A horizontal move now has two possible costs; we need to consider both alternatives
(and therefore store the best scores for each box given horizontal, vertical, or diagonal entry)

Significance of S-W Alignments

RANDOMIZE n times

Compute Z-score for each replicate

$$
Z(A, B)=\frac{S(A, B)-\tilde{m}}{\tilde{\sigma}}
$$

Curve = null model of Z-score fit to Gumbel extreme value distribution

Fig. 6. Distribution of Z-values: (A) empirical distribution (rectangles) and Gumbel model (solide line) for quasi-real sequences. (Insert) the Gumbel model fits the experimental distribution for high Z-values. (B) empirical and Gumbel model for real sequences.

Alignment Complexity

- For each possible matching of a residue from sequence S_{1} with a residue from S_{2}, we need to carry out a constant number of computations and comparisons
- Total $=3 \times m \times n$
- $=\mathrm{O}(m n)$
- $\sim O\left(n^{2}\right)$ if we assume $m \cong n$

Multiple Sequence Alignment

- In pairwise alignment, we are optimizing the score between two sequences
- When aligning 3 or more sequences, instead optimize the sum of pairs score:

$$
\begin{array}{lll}
1 & N & 2 \times S(N, Q) \\
2 & Q & S P(N, Q, Q, D)= \\
3 & Q & 2 \times S(D, Q) \\
4 & D & \\
& & S(Q, Q) \\
& +S(N, D)
\end{array}
$$

The best alignment between a pair of sequences may not appear in the optimal multiple alignment

Multiple Sequence Alignment

- Dynamic programming on k sequences, each of length n requires construction of a k-dimensional matrix with n^{k} entries
- $=O\left(n^{k}\right)$

- Therefore exponential in the number of sequences!

MSA (Carrillo and Lipman, 1988)

- The score of the optimal multiple alignment $S(a)$ can be no greater than the sum of optimal pairwise alignments $S\left(\hat{a}^{k l}\right)$

$$
\sum_{k<1} S\left(a^{k l}\right) \leq \sum_{k<1} S\left(\hat{a}^{k l}\right)
$$

- If we can establish a lower bound σ on the multiple alignment score, then we constrain each $S\left(a^{k l}\right)$:

σ high: $\mathrm{S}(\mathrm{akl})$ must be close to $\mathrm{S}(\mathrm{âkl})$

Constrain each pairwise alignment to score no less than $\sigma+S\left(\hat{a}^{k l}\right)-\sum_{k^{\prime}<l^{\prime}} S\left(\hat{a}^{k^{\prime} l^{\prime}}\right)$

So we need all optimal pairwise alignments

We also need σ. Where can we find it?

Types of multiple alignment

A. Block alignment

| VRALFDF KGDILRI WWNA GMIPVPYV | |
| :--- | :--- | :--- |
| FVALYDF KGEKLRV WCEA GWVPSNYI | |
| VQALFDF | RGDFIHV WWKG GMFPRNYV |
| VVALYDY KGDEYFI WWRA GYIPSNYV | |
| FRAMYDY DGDAIIN WNYG GMLPANYV | |
| VKALFDY KSAIIQN WWRG LWFPSNYV | |
| YRALYDY LGDILTV WLNG GDFPGTYV | |

B. Segment alignment

C. Local alignment

aeyVRALFDFngndeedlpfkKGDILRIrdkpeeq. WWNAedsegkr , GMIPVPYVek. nl FVALYDFvasgdntlsit KGEKLRV1gynhnge WCEAqt kngq . GWYPSNYItpvns. lvdyhrstsvsrnqqiflrdieqvpqqptyVQALFDFdpqedgelgfrRGDFIHVmdnsdpn. WWKGachgqt. . GMPPRNYVtpvnrnv. WWRArdkngqe. GYIPsaryteaeds. tagki FRAMYDYmaadadevs fkDGDAIIMvqaideg \qquad WMYGtvgrtgrtGMLPANYVeai. gspt fkcavincroykaqredelt fiksarIqwvekqegg. \qquad WWRGdyggkkq. LWFPSWYVeemvnpegihrd gYqYRALYDYkkereedidihLGDILTVnkgslvalgfsdgqearpeeigWLNGynettgerGDFPGTYVeyigrkkisp.			

D. Global alignment

From Lecompte et al. (2001) Gene

Summary

- Dynamic programming allows the calculation of optimal pairwise alignments (for a given scoring scheme!)
- As soon as we go from 2 to >2 sequences, the exponential time complexity of the algorithm makes it impractical
- Need heuristics!

